

Kiruna Atmospheric and Geophysical Observatory (KAGO) Status of ALIS_4D

Urban Brändström, Daria Mikhaylova,, Tima Sergienko, and Lars-Göran Vanhainen

Swedish Institute of Space Physics (KAGO, STAR)

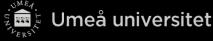
2020-12-08

KAGO Instrument overview

Kiruna Atmospheric and Geophysical Observatory

- Magnetometers, 1950-: IRF [PI: Yamauchi]: Kiruna, Lycksele, Tormestorp;
 SGU[Schwarz]: Abisko, Uppsala and operation of Lycksele
- ▶ Ionosondes, 1952– [PI: Leyser]: Kiruna, Lycksele, Uppsala.
- ► Allsky cameras, 1956– [PI: Brändström]: Kiruna, Abisko, Tjautjas
- ► Riometers, 1958– [PI: Sergienko]: Kiruna, Lycksele
- Infrasound, 1973– [PI: Kero]: (In observatory since 2015) (Kiruna, Jämtön, Lycksele, Sodankylä)
- Ozone radiometer (KIMRA), 2001– [PI: Raffalski]: (In observatory since 2018) (Kiruna)
- ALIS_4D [PI: Brändström] (Observatory measurements from late 2020) Abisko, Kiruna, Silkkimuotka, Tjautjas
- ► (Weather station, ALIS, guest instruments, etc.)

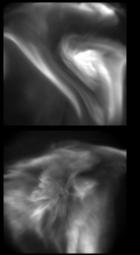
AILS_4D timeline


A Swedish contribution to complementary instruments for EISCAT_3D

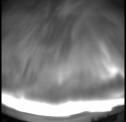
- Funded by Kempestiftelserna, Faculty of Science and Technology at UmU and IRF.
- ► High-time resolution (> 25 FPS)
- Continuous operation (observatory modes)
- Timeline:
 - 2016: (summer) Funding application (granted in November)
 - 2017: Procurement procedures, four Andor imagers delivered, optics ordered
 - ▶ 2018: Optics delivery (April) Main development work.
 - 2019: first light, first campaign (October 2020)
 - 2020: SPIDER2 campaign Continuous operations from end 2020.
 - ► 2021: Regular operations begin

INSTITUTET FÖR RYMDFYSIK

Swedish Institute of Space Physics



First light 2019-02-28 18:38:00.005608 11.006 s 6750 Å


6750 Å

6562 Å

4278 Å

6562 Å ∢□≻∢∄≻∢≣≻∢≣≻ ≣ ਅ੧ೕ

ALIS_4D sites

▶ ◀ 差 ▶ 差 ● � � �

ALIS_4D Overview

- Design goal: to be compatible with EISCAT_3D and similar efforts (in particular optical) in Norway, Finland (and Russia?).
- Both long-time monitoring and campaign mode observations
- Much to explore regarding operating modes, observatory vs. campaign modes, interoperability, etc.
- More or less on schedule (knock on wood)

ALIS/ALIS_4D

Comparision of some key specifications

	ALIS	ALIS_4D phase II
FoV	$6~ ext{CCD}pprox 60^\circ$	4 (5) EMCCD $pprox$ 136 $^\circ$
	$1 \; EMCCD pprox 30^\circ$	$1 \; EMCCD pprox 30^\circ$
	(1 EMCCD $pprox$ 15°)	(1 EMCCD $pprox$ 15 $^{\circ}$)
Spatial	$1024^2 pprox 100 { m m}$	$1024^2pprox 750{ m m}$
resolution	$256^2\approx 500\mathrm{m}$	$512^2pprox 1.5 { m km}$
Temporal	0.2 Hz	$> 25 \ \mathrm{Hz}$
Mode	Campaign only	monitoring/campaign

ALIS/ALIS_4D

Preliminary absolute calibration

Dynamic range.			low	high	
	Res.	Hz	R/count	R/count	λ_c
ALIS (CCD)	256 ²	0.2	1.74		4278Å
ALIS_4D (EMCCD)	1024 ²	25	2.9	10	4278Å
ALIS (CCD)	1024 ²	0.04	13.4		5577Å
ALIS (CCD)	256 ²	0.2	0.78		5577Å
ALIS_4D (EMCCD)	1024 ²	25	0.4	2.5	5577Å
ALIS_4D (EMCCD)	1024 ²	25	0.4	1.7	6300Å

Some components inherited from $\ensuremath{\mathsf{ALIS}}$

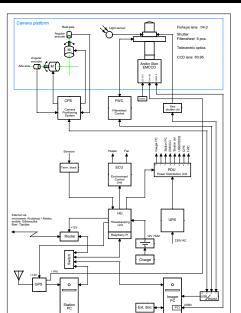
Station huts:

- Camera mounts (refurbished)
- ► Filterwheels (refurbished) and filters
- Aniara (Software) (Major rewrite done)

Sort of an Àttje

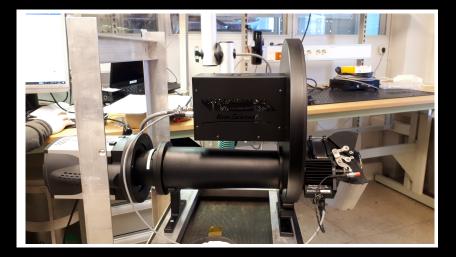
Normal

Pessimal case


$ALIS/ALIS_4D$

Filters inherited from ALIS

')	•			
λ [Å]	$\Delta\lambda [\text{Å}]$	Line	Usage	#
3950	92	Ca, Fe	Meteors	1
4227	280	Ca, Fe, H_2O ,	Meteors	1
4340.5	25	H_γ , Balmer series	Meteors	1
	50	N_2^+ 1Neg.	Aurora/Airglow	6
	25	H_{eta} , Balmer series	Meteors	1
5100	40		Background	4
5577	40	$O(^{1}S)$	Aurora/Airglow	6
5893	200	Na,	Meteors	1
6230	40		Background	4
6300	40	$O(^{1}D)$	Aurora/Airglow	6
6562	70	H_{lpha}	SPIDER	4
6562.8	25	H_{lpha} , Balmer series	Meteors	1
6750	200	$N_2 1P$	SPIDER/LEEWAVES	4
8000	1000	OH Meinel	Airglow LEEWAVES	4
8446	40	O(3p ³ P)	Aurora/Airglow (O($3p^{3}P$))	4



Station block diagram

ALIS_4D ESRANGE imager

ALIS_4D All imagers

Software summary 2020-11-26

Aniara Software suite for ALIS/ALIS_4D written in C (GPL, Brändström and co-authors)

- mima Imager site daemon saba Positioning daemon
 - ud "universal daemon" uses dynamic libraries (modules) for interfacing to various hardware (housekeeping unit, etc.)
- fonoglob Text-based user interface and interfacing daemon (web-interface, other things]

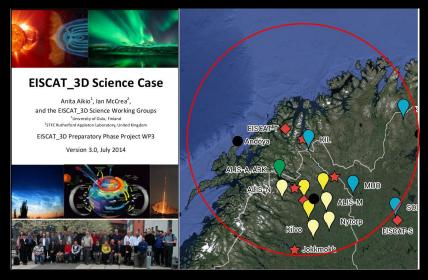
ql4d Quicklooks, movies and more (GPL, Peje Nilsson)

Not yet Keograms.

AIDA_tools Gustavsson, Sergienko (Matlab, Scilab) main analysis software for ALIS/ALIS_4D, etc. Python port!

Data production

"Harddisks are either new or full" Gustavsson


Hz	resolution	${\sf GiB/h}$	total GiB $/{ m h}$	GiB/night
0.1	256 ²	0.02	0.09	1
0.1	512 ²	0.09	0.4	6
0.1	1024 ²	0.35	14.1	22
1	256 ²	0.22	0.88	14
1	512 ²	0.9	3.51	56
1	1024 ²	3.5	14.06	225
25	256 ²	11	44	352
25	512 ²	44	176	1406
25	1024 ²	176	703	5625

500

EISCAT_3D science case

Infrastructures and geographical advantages

Do EISCAT_3D need optics?

- High-speed narrow-band imaging of aurora, RIOE, meteor trails, ...
- Observatory modes (long-time monitoring)
- ► The string "optic" occurs 46 times in 122 pages
- ► Table 1 "EISCAT_3D radar performance requirements" p. 107-109: Optics required in 70 % (16 of 23) science topics.

Optical measurements are a requirement for EISCAT_3D! new-moon periods are popular! (Gustavsson, present EISCAT) There are many clear solid scientific objectives for optical instruments!

Complementary experiences

ALIS/EISCAT campaigns 1990-present

- Many instruments lacks (proper) user interfaces
- Many combinations of operating systems, platforms and software.
- Realtime data access has improved over the years
- Observations missed as many experimenters assumed continous operation (ALIS)
- No common data license but many groups moving in that direction.
- Many of us re-invent the wheel several times
- No joint scheduling of EISCAT and complementary instruments, many PIs to contact
- Increasing Nordic collaboration on these matters (NOMx)

Towards a common interface specification

Some thoughts regarding design requirements

- Platform independent (Everyone must be able continue to use their favourite operating systems and tools)
- Interoperability with other systems such as EISCAT_3D
- Possibility of combining several national infrastructures and instruments into larger units. One such example: BIFROST/ALIS_4D/MIRACLE

data levels

Level	Usage	Archived	Metadata
Level 0	N/A	N/A	N/A
Level 1	Binary dumps (technical tests	yes	no
	only)		
Level 2	Unprocessed (raw) data sto-	yes	yes
	red as FITS-files		
Level 3	Processed data in physical	yes?	yes
	units		
Level 4	Higly processed data in phy-	yes?	yes
	sical units (e.g. 3D volume		
	emission rate from tomogra-		
	phy)		
(Level 5)	Final scientific results (e.g.	yes	yes
	publications)		

Suggested levels of control

	Level of control	For example
C0	Not controllable, data only	Magnetometer, simple rio-
		meter
C1	Basic control ability	Simple ASC
C2	Advanced configuration and	ALIS/ALIS_4D Modern Io-
	control abilities	nosondes
C 3	Realtime analysis capabili-	Not yet
	tes capable of bidirectional	
	command and control	
C4	As C3 but autonomous bi-	Not yet
	directional decision-making	
	and control	

Suggested layers of instrument control

Layer	Description	For example (ALIS_4D)
7	Top level interfaces	EISCAT_3D user interface
6	Translation	Between native interfa-
		ce(s) and other systems
		via a common interface
		specification (CIS)
5	Native user interface or API	web- and/or text-based
		user interfaces
4	Communication	fonoglob -d ("concen-
		trator" daemon)
3	Instrument software	(mima imager daemon)
2	Internal firmware	(Imager firmware)
1	Hardware	(Imager, filterwheel, etc.)

ALIS_4D SPIDER2 launch

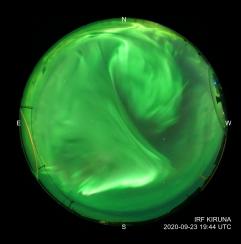
Ongoing scientfic studies

Data-analysis/publications

- G. Giono, N. Ivchenko, T. Sergienko and U. Brändström: "Multi-point measurements of the plasma density and temperature from the Langmuir probe onboard the SPIDER sounding rocket Free Falling Units." (SPIDER, ALIS, SNSA)
- Sergienko, et al.: data-analysis (SNSA ongoing) Quicklook-movie 2020-02-19 SPIDER2 launch at 23:14 UTC
- Sergienko, et al.: Orbit determination from ALIS_4D images (ongoing, SNSA/NRFP)

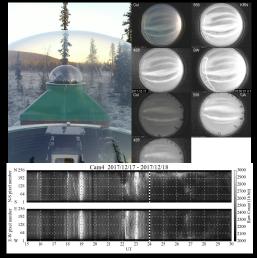
Future projects

- ► Several scientific campaigns 2020/2021
- BROR (Sergienko, SNSA Approved yesterday!)
- Orbit determinations (SNSA/NRFP, TBC)


PI: Urban Brändström

- Operational with four stations (Abisko, Kiruna, Silkkimuotka and Tjautjas) since fall 2019.
- ► ESRANGE since spring 2020. SPIDER2
- BROR: barium release rocket mission (if funded)
- Optical support for EISCAT_3D
- Andor DU-888 EMCCD-imagers (1024 × 1024, up to video rates)
- ► Narrow band interference filters with six position filter-wheel
- Absolute calibrated.
- Long-time monitoring starts soon (2020, hopefully MIRACLE compatible) Delayed mainly because of cloudy skies.
- ► Raw-data (FITS), gif quicklooks and daily movie.
- Quicklook-movie 2020-09-23

New allsky camera (Sony α 7S)


PI: Urban Brändström

- Normally 1 exp. / min. but campaign modes available
- Keograms, movie and three resolutions (up to 4K available)
- Quicklook-movie 2020-09-23

ISEE/NIPR

PI: Yasunobu Ogawa (watec), Keisuke Hosokawa (100 Hz)

Summary

- Operational but some more work remains...
- ALIS_4D long-time monitoring of selected emissions starts "RalSoonNow(tm).
- BROR mission (Funded by SNSA)
- New allsky-camera in Kiruna, (open-source)
- The pandemic makes things go slower, but so far no major problems as long as nobody gets covid-19
- A lot of work, we are under-staffed but situation more or less under control as long as all are healthy
- ALIS_4D example quicklook movie at http://alis.irf.se/stdnames/2020/09/23/2020-09-23.mp4
- Corresponding movie from new allsky-camera: https://www.irf.se/alis/allsky/krn/2020/09/23/movie20200923.mp4

References I

<□ < 4 = < 4 = < 4 = < 4 = < 0 < 0</p>